Simplification of Coefficients in Differential Equations Associated with Higher Order Frobenius–euler Numbers

نویسنده

  • FENG QI
چکیده

In the paper, by virtue of the Faà di Bruno formula, some properties of the Bell polynomials of the second kind, and the inversion formulas of binomial numbers and the Stirling numbers of the first and second kinds, the authors simplify meaningfully and significantly coefficients in two families of ordinary differential equations associated with higher order Frobenius–Euler numbers. E-mail addresses: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]. 2010 Mathematics Subject Classification. Primary 34A05; Secondary 05A16, 11A25, 11B37, 11B68, 11B73, 11B83, 33B10, 34A34.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials

In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.

متن کامل

Discrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients

This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...

متن کامل

Simplifying Coefficients in Differential Equations Associated with Higher Order Bernoulli Numbers of the Second Kind

In the paper, by virtue of the Faà di Bruno formula, some properties of the Bell polynomials of the second kind, and an inversion formula for the Stirling numbers of the first and second kinds, the authors establish meaningfully and significantly two identities which simplify coefficients in a family of ordinary differential equations associated with higher order Bernoulli numbers of the second...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017